
Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

SAFELY TRANSFERRING TO UNSAFE ENVIRONMENTS
WITH CONSTRAINED REINFORCEMENT LEARNING

Ethan Knight

OpenAI, Stanford Univeristy
ehk@stanford.edu

Joshua Achiam

OpenAI, UC Berkeley
jachiam@openai.com

ABSTRACT

Agents deployed in the real world should operate safely, under constraints appro-
priate to the environment around them. In this work, we consider the problem of
safe transfer: learning a safe, general policy from a low-stakes environment, and
then transferring that policy to a more complex, high-stakes environment while
continuing to satisfy safety constraints. In our experiments, we investigate safe
transfer in an obstacle-avoidance setting, where we train a vision-based locomo-
tion agent for transfer between simulated environments with different kinds of
obstacles. In the low-stakes environment, the agent navigates around walls in its
path, and in the complex high-stakes environment, the agent must avoid bumping
into humanoids that are performing random actions from a motion capture dataset.
We find that agents pre-trained in the low-stakes environment incur much lower
cumulative cost than agents trained from scratch in the high-stakes environment
while maintaining comparable performance, providing evidence and hope that fu-
ture large-scale constrained reinforcement learning deployments can benefit from
the safe transfer approach.

1 INTRODUCTION

Figure 1: Through its first-person cam-
era, the “Doggo” agent learns to per-
ceive and safely navigate around simu-
lated humanoids.

Reinforcement learning (RL) is a promising technology
for solving a variety of problems currently unsolvable
by other methods, like tasks that involve high-bandwidth
communication and collaboration with humans. How-
ever, there are two main obstacles to widespread adop-
tion: first, RL is typically sample inefficient, requiring
the collection of thousands or millions of environment in-
teractions to train an agent. Second, the trial-and-error
nature of RL makes it inherently unsafe in some settings,
especially those where agents interact with humans di-
rectly.

Transfer learning approaches can be used to address the
sample efficiency problem, for instance by pretraining
agents on a set of related tasks before fine-tuning on
the downstream task of interest. While the problem of
maximizing task performance through transfer learning
is well-studied, satisfying safety requirements through
transfer learning is less frequently considered, and is the
focus of this work. Additionally, RL algorithms deployed
in complex real-world environments may be better suited to dealing with distributional shift on a
higher environment level during safe transfer than on a lower physics level, which work in domain
randomization has revealed to have a highly variable impact on performance (Tobin et al., 2017;
OpenAI et al., 2019).

For a motivating example, consider a robot intended to operate in a warehouse and move boxes. In
order to be safe, it must avoid crashing into shelves or humans. A transfer approach is desirable
here, because training from scratch in the deployment environment would interfere with normal

1

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

warehouse operations in an expensive and possibly unsafe way. Zero-shot transfer is unlikely to be
robust to the distributional shift, so fine-tuning in the deployment environment should be applied
as well. To minimize risk, the agent should come as close as possible to satisfying safety require-
ments before being introduced to the deployment environment, and should preserve that constraint-
satisfaction on continued training.

In this work, we investigate the feasibility of an approach to safe transfer that uses model-free con-
strained RL for both pre-training and fine-tuning. Our main contribution is an empirical demonstra-
tion that this approach can achieve safe transfer—retention of basic skills and knowledge of safety
specifications—between simulated high-dimensional, partially-observed environments involving lo-
comotion, vision, and navigation. Based on our results, we claim that this approach is promising for
safe transfer problems in the real world.

2 CONSTRAINED REINFORCEMENT LEARNING

To formalize what it means for an RL agent to be safe, we operate in the constrained RL framework
(Achiam et al., 2017; Ray et al., 2019). In this framework, the environment defines a cost function
c(s) on states s, and some episodic cost limit d, under which an agent is considered safe, and over
which an agent is considered unsafe. Thus, agent learning not only consists of optimizing for the
expected return, but carries with it an additional constraint. Any policy with an episodic cost under
the cost limit is strictly better than any policy with an episodic cost over the cost limit.

2.1 ALGORITHM

We perform both pre-training and fine-tuning using a distributed, recurrent Soft Actor-Critic
(Haarnoja et al., 2018) with an extra Q-network Qc to predict future episodic cost. Constraints
on average episodic cost are approximately enforced using the method of Lagrange multipliers, as
in Ray et al. (2019). Thus, the constrained entropy-regularized reinforcement learning optimization
objective can be described as follows:

max
✓

R(✓) + ↵H(✓), C(✓)  d =) max
✓

min
��0

R(✓) + ↵H(✓)� �(C(✓)� d),

where R(✓) is the expected return of the policy, C(✓) is the expected cost, and H(✓) is the average
entropy of the policy. We optimized this objective by alternating between optimizing the Lagrange
multiplier � and optimizing the parameters of the model ✓ using Adam (Kingma & Ba, 2014).

In our implementation, a central learner node performed the optimization using SAC and passed
parameters to actor nodes, which passed trajectories to the learner node. The distributed backend
used Ray (Moritz et al., 2017). Because the agent had to cope with partial observability, we also
cached hidden states from actor rollouts and loaded them into the learner. The resultant setup was
similar to ApeX (Horgan et al., 2018) with no burn-in steps.

We found it crucial to also cache the last seen reward and costs and pass them to the recurrent
network as inputs concurrent to the observation (see model details in Appendix A). Without infor-
mation about the last reward and cost, learning in both the low-stakes and high-stakes environments
were dramatically less stable. We conjecture that quickly adapting on the fly is a crucial skill of safe
complex RL agents, and that providing immediate feedback provides important signal during an
episode. In our experiments, the agent learned to take a step back when it received a cost – without
information about the previous cost, small imperfections in cost modeling could cause the agent to
lean against a wall, repeatedly incurring cost. We present an ablation testing this in Appendix C.
Additionally, the full pseudocode is provided in Appendix D.

3 ENVIRONMENTS

We use environments where an agent must locomote and navigate from vision to travel from one
end of a long, cluttered hallway to the other, where obstacles must be avoided for safety reasons.
The agent is given a reward for moving forward, and incurs a cost for touching an obstacle.

Low-stakes environment. For the low-stakes pre-training environment, the obstacles are walls
whose locations are randomly perturbed at the start of each episode. This weak form of domain ran-

2

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

(a) (b) (c)

Figure 2: Agents are given rewards for navigating to the far end of the environment. In the low-
stakes environment (Figure 2a), the agent must use its vision to navigate around the walls. In the
Poles high-stakes environment (Figure 2a) the walls are replaced by poles, and in the Humanoid
high-stakes environment (Figure 2c), the agent must perceive and react to humanoids performing
behaviors sampled randomly from the CMU MoCap database.

domization is built in so the agent does not memorize the locations of the walls, and is instead forced
to respond to novel sensory inputs. The starting location of the agent is also lightly randomized.

High stakes environments. Our first “high-stakes” deployment environment has little real-world
analogue, but nonetheless tests the ability of the agent to adapt to novel environments where the cost
landscape changes. In this “Poles” environment, the reward and cost functions remain unchanged,
but the obstacles are poles instead of walls. This presents a challenge, as a transferred agent will
have never seen circular objects and can get stuck trying to navigate between poles.

For our second high-stakes environment, we replace all obstacles with simulated people, which
perform various movements from the CMU Motion Capture database (De la Torre et al., 2009).
This is an extremely difficult transfer problem – not only do the obstacles change form, but they
are no longer stationary or entirely predictable. As before, the reward function is unchanged, but
because the humanoids can fall on top of the agent, the agent is only penalized the first time it
touches a given humanoid.

3.1 AGENT EMBODIMENT

Figure 3: Renderings of Point
(top) and Doggo (bottom).

In our experiments, agents are embodied as either a simple
“Point” robot or a quadrupedal “Doggo.” The Point robot can di-
rectly control its heading and forward speed, whereas the Doggo
agent must learn to walk.

The agent perceives the world through a camera mounted on its
head as a 50 ⇥ 50 pixel array, in addition to proprioceptive in-
put (joint angles, etc.). In some experiments, we used an RGB
representation, but for the experiments shown here, we equip the
agent with a depth camera for a visual field of size 50⇥ 50⇥ 1.
Due to the agents’ limited senses, they must learn cope with par-
tial observability.

4 EXPERIMENTS AND RESULTS

We first demonstrate that unconstrained reward maximization does not trivially achieve safe policies
by running our algorithm without training with respect to the cost Q-network. The results from this
experiment are shown in Appendix C. One can observe that the optimal unconstrained policy incurs
an average episodic cost in the hundreds, which is well outside the realm of acceptability.

In our main experiments, we demonstrate that safe transfer using constrained RL for pre-training
and fine-tuning can meet the task and safety performance of training from scratch with constrained
RL in the deployment environment, while incurring far fewer lifetime costs in the deployment envi-
ronment.

3

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

Po
le

s
H

um
an

oi
ds

(a) Episodic Return (b) Episodic Cost (c) Regret (total cost)

Figure 4: Safe adaptation to high-stakes environments with the Doggo agent. Safe Transfer agents
train an equivalent number of epochs in the low-stakes environment, and then transfer to high-stakes
environment, indicated by the grey dotted line. Safe Transfer agents incur much less lifetime regret
(total accumulated cost) than agents trained from scratch in high-stakes environments.

4.1 SAFE TRANSFER.

From Scratch Zero-shot

Return Cost Return Cost

P-Poles 1090 0.4 756 1000
P-Humanoids 1040 16 935 5.5
D-Poles 800 1.8 877 3.1
D-Humanoids 965 2.2 946 3.9

Table 1: Agents transferred from the low-stakes en-
vironment do nearly as well as agents trained from
scratch in the deployment environment, and can im-
prove in performance via fine-tuning (see Figure 4).
Here, “P-” means Point and “D-” means Doggo.

We compare baseline agents trained from
scratch in high-stakes environments to
agents pre-trained in the low-stakes envi-
ronment, presenting zero-shot transfer re-
sults (Table 1) and fine-tuning results (Fig-
ure 4). Overall, the safe transfer agents in-
cur significantly less total lifetime regret
than agents trained from scratch, while
achieving comparable task performance.
While this result is attributable mostly
to the similarity between pre-training and
deployment environments, it nonetheless
demonstrates that this approach is feasible
and scalable, and as a result is promising
for problems of interest in the real world.

5 CONCLUSION

In this paper, we claimed that safely transferring from a simulated low-stakes environment to a
simulated high-stakes environment is an important step towards safe deployment of autonomous
learning agents. We were surprised to find that model-free methods worked well in transferring
across the environments we tested, in both the zero-shot and few-shot regimes. In future work, we
hope to expand on the success of this initial trial by rigorously exploring more approaches, and
testing on even more difficult, perhaps real-world environments.

As a closing thought, we highlight that the success of transfer approaches depends on the similarity
between the transfer tasks. In future work, we would be interested in exploring how the satisfaction
of safety constraints can be assured as the similarity between tasks is varied.

4

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 22–31.
JMLR. org, 2017.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014. URL https://arxiv.org/abs/1409.1259.

Fernando De la Torre, Jessica Hodgins, Adam Bargteil, Xavier Martin, Justin Macey, Alex Col-
lado, and Pep Beltran. Guide to the carnegie mellon university multimodal activity (cmu-
mmac) database. 2009. URL https://kilthub.cmu.edu/ndownloader/files/
12037214.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933, 2018. URL
http://arxiv.org/abs/1803.00933.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014. URL
http://arxiv.org/abs/1412.6980.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems, pp. 971–980, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for emerging AI
applications. CoRR, abs/1712.05889, 2017. URL http://arxiv.org/abs/1712.05889.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. 2019. URL https://cdn.openai.com/safexp-short.pdf.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
CoRR, abs/1703.06907, 2017. URL http://arxiv.org/abs/1703.06907.

5

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

A AGENT DETAILS

To cope with vision input and partial observability, our agent’s network incorporates an RNN and a
CNN. A schematic is provided in Figure 5, and a parameter count is shown in Table 2.

Figure 5: Schematic diagram of model-free constrained agent.

Module # Parameters

Vision CNN 1.4e5
CNN Embedding 1.3e5
RNN (GRU) (Cho et al., 2014) 4.3e5
Policy MLP 3.5e5
Q MLPs (⇥3) 3.5e5

Total 2.1e6

Table 2: Parameter count of final model-free agent.

B HYPERPARAMETERS

of Actors 60
CNN architecture Nature CNN (Mnih et al., 2015)
Activation SeLU (Klambauer et al., 2017)
↵ (entreg coef.) 0.005
Learner replay size 2⇥ 106

Actor replay size 105

Batch size 256
Backprop horizon 30
c (per-timestep cost limit) 0.01
Learning rate 3⇥ 10�4

Max environment timesteps 1000
Training steps per epoch 4000

Table 3: Hyperparameters for constrained model-free agent

6

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

C ABLATIONS

C.1 UNCONSTRAINED TRAINING

Figures 6 and 7 show results for an unconstrained SAC agent trained on the environments presented.
Episodic cost remains high throughout training, indicating that the constrained optimiation is needed
to achieve a cost-limit-satisfying policy.

Point-Walls (from scratch) Point-Poles (from scratch) Point-Humanoids (from scratch)

R
et

ur
n

Ep
.C

os
t

Figure 6: Unconstrained SAC on Point environments.

Doggo-Walls (from scratch) Doggo-Poles (from scratch) Doggo-Humanoids (from scratch)

R
et

ur
n

Ep
.C

os
t

Figure 7: Unconstrained SAC on Doggo environments.

7

Accepted to the ICLR 2020 workshop: Beyond tabula rasa in RL (BeTR-RL)

C.2 ADAPTING ON THE FLY

We hypothesize that giving agent access to environment feedback allows for both faster learning in
low-stakes environments and safer adaptation in high-stakes environments. In Figure 8, we experi-
ment with taking away the ability for the agent to perceive its previous reward and cost.

R
eg

re
t

Figure 8: Ablation on providing the previous reward and cost as input to the agent in the Doggo-
Walls environment. We find that removing the feedback significantly impairs the agent’s ability to
be safe.

D CONSTRAINED SAC PSEUDOCODE

Algorithm 1 Lagrangian Actor-Critic (SAC-like)
Require: Initial Lagrange multiplier �
Require: Cost limit c
Require: Agent with parameters ✓, policy ⇡, return Q-networks Q1, Q2 target networks Qtarg

1 , Qtarg
2 ,

cost Q-network Qc and target network Qtarg
c

while not trained do

Collect experience from environment
Update Q1, Q2 according to entropy-regularized Bellman backup:

�r✓Q1,2
E
"✓

Q(s, a)� r + �(1� d)

✓
min

i2{1,2}
Qtarg

i (s0, a0)� ↵ log ⇡(a0|s0)

◆◆2
#

Update Qc according to Bellman cost backup:

�r✓Qc
E
h�
Qc(s, a)� r + �(1� d)Qtarg

c (s0, a0)
�2i

Update ⇡ according to constrained, entropy-regularized objective:

r✓⇡E


min
i2{1,2}

Qi(s, a(s))� ↵ log ⇡(a✓(s)|s)� �Qc(s, a✓(s))

�

Update Lagrange multiplier �:

r�E [�(c�Qc(s, a))]

Update target networks Qtarg
1 , Qtarg

2 , Qtarg
c

end while

8

